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INTRODUCTION AND NOTATION

The average motion of a charged particle trapped in the geomagnetic

field can usually be represented with adequate accuracy by assuming the

conservation of the first two adiabatic invariants [e.g. Northrop, 1963]

S = pf/2mB (1)

J = p, ds (2)

where integration is along a field line between mirror points. In addi-

tion, specification of the averaged motion also involves the parameters

defining the magnetic field line to which the particle is attached. This

role is usually served by the Euler potentials ( oL, ) [e.g. Stern,

1970] ; given (J, 4) of the particle and ( o(, ) of the field

line to which it is attached at some initial time t , the "drift surface"

described by its averaged motion is completely determined.

In the absence of electric fields and time dependence the energy is

conserved and the drift surface may be described by properties of the

trajectory not involving the energy, such as the mirroring field B andm
the quantity I' = J/v . In this case B and the initial values ofm
( ol, ) are sufficient to define the drift surface, since I' may be

derived from them.

If in addition the magnetic field has the dipole configuration it

is often convenient to use instead of B the sine y of the equatorial

pitch angle. An appropriate set of Euler potentials is then, in polar

coordinates
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= ( a2 go / r ) sin2  (5)

= a10 (4)

where a is the earth's radius and g = -0.51 gauss is the dipole
1

harmonic coefficient. In many applications it is convenient to introduce

a related quantity

L = a g (5)

equal to the equatorial distance , in earth radii, of the field line

with the given value of CV (one could use L as an Euler potential,

but the form of B then is not as simple). With the above definitions one

c an afin- +he imn- inle "lnitdinal integrl

B
m

I(y = a1 1 - (B/B) 2 das (6)

B'
m

evaluated between mirror points and proportional to I' . Here the initial

values of oL and of y are all that is needed to define the drift surface,

since I depends on y and P is absent due to axial symmetry. Appro-

ximations of the function I(y) have been derived by-Schulz f, ] and

by others.

In the geomagnetic field this approach is often use4 at high energies,

where the effects of electric fields can be neglected. However, at

energies of the order of one kilovolt this method no longer works, since

t~ineticneenergy may change appreciably : in this range L and J , rather than

B and I' (or I) are to be regarded as conserved quantities. The pur-

pose of this work is to provide the means for treating this more general

motion, assuming a dipole field.
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THE AVERAGED HAMILTONIAN

The chief tool in this treatment is the averaged Hamiltonian K(J, ~, (,

the properties of which have been developed by Northrop and Teller [ 1960 ,

eqs. 30 ; see also Northrop, 1963, eqs. 3.68 ] . Assuming the adiabatic

invariants J and ii are conserved and denoting by W the kinetic energy

(in all what follows the nonrelativistic form m v2 /2 will be used), the

averaged Hamiltonian has the form

K = W(,C, J, [-) + e + (e/c) Q./?t (7)

where W is independent of p due to the axial symmetry of the dipole

field. For adiabaticity to hold, the electric field must be orthogonal

to B at least to the lowest order; if such orthogonality is assumed

and no time dependence exists, the electric potential 0 will be a

function of (o,p ) only and in general, the part of K not including

W will depend on oL and only [Northrop and Teller, 1960, eq. 9 1

Two limiting cases are easily calculated. If J = 0 the particle is

confined to the equatorial plane and one gets

w ( o4, o, p) = = = P( , L) (8)

This form has been widely used in examining the motion of charged parti-

cles in the equatorial plane of model magnetospheres [Chen, 1970 ; Stern ,

1971

On the other hand, if i = 0 then v// = v . In that case ,if

S denotes the total length of the guiding field line, equation (2)

reduces to

J = 2 m v S = 2 m v I0 a L (9)
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where

I = 2 + 3 ln(2+ 3 ) = 2.76

Expressing the kinetic energy gives

w (c, J, 0) = (J 2 /8 m I2 a2 ) L 2 = Q(J, L) (10)

Here an approximation will be derived for W which can be used over

the entire range of parameters. In doing so, account should be taken of

the special nature of the dipole field, which constrains the allowed form

of W .

Tlhe ainnlp fipl ha..q the nrnO-perty.v that .11 its fiel lin a hqre the

same configuration - only the scale length of the configuration varies.

This reduces the functional form of W from a dependence on 3 variables

to a dependence on only two.

For proof, let y be introduced as auxiliary variable. Then from (1),

(6) and (10)

r(y) = Q I / (11)

2 = P/W (12)

If y is eliminated between (ll) and (12) a relation is obtained of

the form

P / w = F(Q / I2 w) (15)

If W is extracted from this, it can depend on p , J and o only

through the functions P and Q . A convenient representation of it, with

the correct dimensionality and limits, would be

W(P, Q) = P + Q + _ k Ql k (14)

where 0 < Sk 4 1 , since Q vanishes when W = P and vice versa.
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It simplifies the calculation if Q is replaced by

x = (g / P ) I(y)/y (15)

This reduces (14) to the form

w(p, x) = P ( 1 + x2 /I~ + k Z Xak  ) (16)

Comparison with (12) shows that the expression in parentheses simply equals

y . The results derived here will be presented in this notation.

THE APPROXIMATION TO W

One term in the expansion, the term linear in X , can be derived

from the harmonic-oscillator approximation developed by Schulz [1971]

for values of y near unity

I(y) 0.7405 ( 1 - y2 ) (17)

If y = 1- S , then

x/0.7405 = 2S

Substituting in (12) gives the coefficient of X near y = 1 as 1/0.7405

(the term proportional to X2  may be neglected there)

W = P / y2  = P ( 1 + 2S )

= P ( 1 + 1.3505 X ) (18)
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A relatively accurate approximation to W , including two terms in

addition to the three developed here, is

w = P ( 1+ 1.5505 X - 0.030425 X4/3+ 0.10066 X5/3 + X2 / 12

SP f(X) (19)

As a test we note that by (12) this should satisfy

y f(X) = 1 (20)

Actual values of this product, as functions of the mirror colatitude

Sm , are listed in Table 1 . The largest errors fall in the range which

in most practical cases is inside the loss cone and for most of the field

line the error is l/ 0o or less.

APPLICATION

The relation (20) establishes a certain relation between X and y ,

or equivalently between X and the equatorial pitch angle A ( y = sin N

and this relation is plotted in Figure 1 . This plot can be used to deter-

mine the energization of particles drifting earthward in a combined

electric and magnetic field, in the following way.

Suppose a particle starts at L = Ll with an equatorial pitch angle

M1 and arrives at L = L2 : we wish to know by how much has its kinetic

energy changed. The initial kinetic energy is readily deiived from the

given data, for by (12)

W = p g0O / L3 sin2 (21)
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From Figure 1 the initial value X1  corresponding to A, is read

off. By (15), (8) and (10)

x = (J2/ 28m ig)2 L2  = constant L 2 (22)

Therefore the final value of X is

X2 = X1 (L2/L1 ) 2 (23)

With X2  having been derived, the corresponding value of the pitch

angle A2 is readily read off Figure 1 , after which (21) is used

to obtain the final energy W2 .

From (8) and (10) it is evident that in the limiting cases

J = 0 and i = 0 W increases as L and L-2  , respectively, and

near these limits the above more elaborate method need not be used. It

becomes useful in the intermediate range where neither of the adiabatic

invariants can be considered to be small

MEAN DRIFT

By the formula developed by Northrop and Teller [1960] the average

motion of the particle satisfies

< = -(c/e) IK/' f (24)

> = (c/e) K/To( (25)

The differentiation of the electromagnetic terms in equation (7) is

straightforward and therefore only that of W will be discussed. In the

special case of the dipole magnetic field no dependence on P exists, so
there is no contribution to (< > from this term. For deriving (25) one

must substitute
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X = J (8.am ) 2 OC 2

(26)

P = t o / a3 (gO)2

after which differentiation is straightforward. In order to give the

motion an intuitive representation it is useful to map it into the equatorial

plane, where every point corresponds to a pair of values of (C, )

and can therefore represent the field line passing through it. Let V be

the velocity of the point at which the field line to which the particle

is attached crosses that plane.Then if '6/Dt = 0 and all variables are

evaluated in the equatorial plane

(27)

Substituting (27) in (24) and (25) and subtracting the former from

the latter then gives

VK = (c/e) V 9 B (28)

Since V is in the equatorial plane, it has no component parallel to B ,

from which follows (compare eq. 31, Northrop and Teller, 1960 )

V = (e/cB2 ) B X VK (29)

This resembles the formula for the magnetic drift velocity in the

presence of a force field - VK , but is actually not the same thing

(except in the limit J = 0 , when the particles are confined to the equa-

torial plane) since V is an averaged drift velocity, averaged over the

entire field line and then projected onto the equatorial plane.
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Equation (29) provides a method for calculating V ; for instance, in

the case of the dipole field or in other axisymmetric fields where = af

one obtains, by resolving B into Vr x VP , the relation

v _-3c (1 + 1.1254 X - 0.023664 X4/3 0.0727 5 / 3 + 2 X2 /3 12 ) (30)
- eaL

which also follows from (25). This can be evaluated by means of (26) and

provides a quick derivation of the averaged magnetic drift velocity

(electric drifts can be simply added to it) which in general requires a

lengthy calculation.

If the values of (J, k) are set, K is a function of ( o, f) and

can be chosen to serve as an Euler potential. Let then u(o4, ) be the

conjugate Euler potential, i.e. let it satisfy

B = VK X u(o,j ) (31)

The mean rate at which u changes can be evaluated in the equatorial

plane and is, in the absence of explicit time dependence

(<) = V Vu = e/c = constant (32)

Taken together, K and u describe the mean motion of particles, mapped

into the equatorial plane, in a simple intuitive way. By (29)

v*VK = 0 (33)

i.e. the particle stays on a constant value of K (this no longer

holds if K contains direct dependence on t), so that lines of constant

K in the equatorial plane resemble rays along which particles are guided.

On the other hand, by (32) lines of constant u play the role of "wavefronts",

since a group of particles starting initially from a given value of u

will at all times share the same value of u , in the particular represen-

tation of u which was initially chosen (the choice of u is not unique,
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and a group of particles lined up along a line of constant u in one

representation might no longer do so when another one is used).

These "pacing functions" (they pace the rate at which particles advance

along lines of constant K) will be discussed in a separate paper. The

"conjugate potential" of a given electric potential + (0, P) [ Stern,

1974a 1 represent the special case of u when W = 0 and /I t = 0

in equation (7) .

According to Northrop and Teller, the "bounce time" T for one

complete oscillation between mirror points satisfies

T-1 = (K/ZJ

= ( K/Z X) ( x/b J) (34)

By (15) X depends on J through I(y) (the denominator there

is related to the first invariant ) and explicitely one then finds

X = J/2mvaly (35)

(this may be compared to eq. 9 , where I has attained its maximal

value IO ). Thus

1 = (p g/ 8 ma L ) ( 1.5050 - 0.040I567 X1/5 +

4 0.16777 X/ 3 + 2 X /I 0  ) (56)

Note that the averaged equatorial drift velocity V and bounce period

T given by equations (30) and (36) respectively reduce to the

expressions derived by Schulz 1 197j in the limits of J = 0 and Fi = 0
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CAPTIONS TO FIGURE AND TABLE

Figure 1 - A plot of X (defined in equation 15) against the

equatorial pitch angle

Table 1 - Values of the product y2 f(X) (given in equation 20)

using the approximation (19) for f(X), as a function of

mirror colatitude em and of y2 .m



Table 1

em Y2 y2 f (X)
degrees degrees

5 0.03 1.0290

10 0.21 1.0356

15 0.71 0.0002 1.0297

20 1.66 0.0008 1.0179

25 3.17 0.0031 1.0063

30 5.34 0.0087 0.9989

35 8.23 0.0205 0.9966

40 11.89 0.0424 0.9986

45 16.33 0.0791 1.0032

50 21.56 0.1350 1.0075

55 27.58 0.2143 1.0099

60 34.38 0.3189 1.0102

65 41.97 0.4473 1.0081

70 50.32 0-5924 1.0049

74 57.54 0.7120 1.0026

78 65.20 0.8242 1.0010

82 73.23 0.9167 1.0001

86 81.54 0.9782 0.9998
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